Chapter 15
Digester

As you have seen in the previous chapters, we use a Bootstrap class to instantiate
a connector, a context, wrappers, and other components. Once you have those
objects, you then associate them with each other by calling the set methods of
various objects. For example, to instantiate a connector and a context, use the
following code:

Connector connector = new HttpConnector();
Context context = new StandardContext ();

To associate the connector with the context, you then write the following code:

connector.setContainer (context);

You can also configure the properties of each object by calling the
corresponding set methods. For instance, you can set the path and docBase
properties of a Context object by calling its setPath and setDocBase
methods:

context.setPath ("/myApp") ;
context.setDocBase ("myApp") ;

In addition, you can add various components to the Context object by
instantiating the components and call the corresponding add method on the
context. For instance, here is how you add a lifecycle listener and a loader to
your context object:

LifecyclelListener listener = new SimpleContextConfig();

((Lifecycle) context) .addLifecyclelistener (listener);

Loader loader = new WebappLoader () ;
context.setLoader (loader);

Once all necessary associations and additions have been performed, to complete
the application start-up you call the initialize and start methods of the
connector and the start method of the context:

connector.initialize();

((Lifecycle) connector) .start();
((Lifecycle) context) .start();

This approach to application configuration has one apparent drawback:
everything is hard-coded. Changing a component or even the value of a property
requires the recompilation of the Boot strap class. Fortunately, the Tomcat
designer has chosen a more elegant way of configuration, i.e. an XML document
named server.xml. Each element in the server.xml file is converted to a Java
object and an element's attribute is used to set a property. This way, you can
simply edit the server.xml file to change Tomcat settings. For example, a
Context element in the server.xml file represents a context:

<context/>

To set the path and docBase properties you use attributes in the XML
element:

<context docBase="myApp" path="/myApp"/>

Tomcat uses the open source library Digester to convert XML elements into
Java objects. Digester is explained in the first section of this chapter.

The next section explains the configuration of a web application. A context
represents a Web application, therefore the configuration of a web application is
achieved through configuring the instantiated Context instance. The XML file
used for configuring a web application is named web.xml. This file must reside
in the WEB-INF directory of the application.

Digester

Digester is an open source project under the subproject Commons under the
Apache's Jakarta project. You can download Digester it from
http://jakarta.apache.org/commons/digester/. The Digester API comes in
three packages, which are packaged into the commons-digester.jar file:

* org.apache.commons.digester. This package provides for rules-
based processing of arbitrary XML documents.

* org.apache.commons.digester.rss. Example usage of Digester
to parse XML documents compatible with the Rich Site Summary format
used by many newsfeeds.

* org.apache.commons.digester.xmlrules. This package provides
for XML-based definition of rules for Digester.

We will not cover all members in the three packages. Instead, we will
concentrate on several important types used by Tomcat. We will start this

section by presenting the Digester class, the most important type in the
Digester library.

The Digester Class

The org.apache.commons.digester.Digester class is the main class in
the Digester library. You use it to parse an XML document. For each element in
the document, the Digester object will check if it needs to do something. You,
the programmer, decide what the Digester instance must do before you call its
the parse method.

How do you tell the Digester object what to do when it encounters an XML
element? Easy. You define patterns and associate each pattern with one or more
rules. The root element in an XML document has a pattern that is the same as
the name of the element. For example, consider the XML document in Listing
13.1.

Listing 13.1: The example.xml file

<?xml version="1.0" encoding="IS0O-8859-1"7?>
<employee firstName="Brian" lastName="May">
<office>
<address streeName="Wellington Street" streetNumber="110"/>
</office>
</employee>

The root document of the XML document is employee. The employee
element has the pattern employee. The office element is a subelement of
<employee>. The pattern of a subelement is the name of the subelement
prefixed by the pattern of its containing element plus /. Therefore, the pattern
for the office element is employee/office. The pattern for the address
element is equal to:

the parent element's pattern + "/" + the name of the element

The parent of the address element is <office>, and the pattern for
<office> is employee/office. Therefore, the pattern for <address> is
employee/office/address.

Now that you understand how a pattern derives from an XML element, let's
talk about rules.

A rule specifies an action or a couple of actions that the Digester must do
upon encountering a particular pattern. A rule is represented by the
org.apache.commons.digester.Rule class. The Digester class
contains zero or more Rule objects. Inside a Digester instance, these rules

and their corresponding patterns are stored in a type of storage represented by
the org.apache.commons.digester.Rules interface. Every time you add
a rule to a Digester instance, the Rule object is added to the Rules object.

Among others, the Rule class has the begin and end methods. When
parsing an XML document, a Digester instance calls the begin method of
the Rule object(s) added to it when it encounters the start element with a
matching pattern. The end method of the Rule object is called when the
Digester sees an end element.

When parsing the example.xml document in Listing 13.1, here is what the
Digester object does:

=]t first encounters the employee start element, therefore it checks if
there is a rule (rules) for the pattern employee. If there is, the Digester
executes the begin method of the Rule object(s), starting from the
begin method of the first rule added to the Digester.

= It then sees the of fice start element, so the Digester object checks if
there is a rule (rules) for the pattern employee/office. If there is, it
executes the begin method(s) implemented by the rule(s).

= Next, the Digester instance encounters the address start element.
This makes it check if there is a rule (rules) for the pattern
employee/office/address. If one or more rule is found, execute the
begin method(s) of the rule(s).

= Next, the Digester encounters the address end element, causing the
end method(s) of the matching rules to be executed.

= Next, the Digester encounters the of fice end element, causing the
end method(s) of the matching rules to be run.

= Finally, the Digester encounters the employee end element, causing
the end method(s) of the matching rules to be executed.

What rules can you use? Digester has predefined a number of rules. You can use
these rules without even having to understand the Rule class. However, if these
rules are not sufficient, you can make your own rules. The predefined rules
include the rules for creating objects, setting the value of a property, etc.

Creating Objects

If you want your Digester instance to create an object upon seeing a particular
pattern, call its addOb jectCreate method. This method has four overloads.
The signatures of the two more frequently used overloads are as follows:

public void addObjectCreate(java.lang.String pattern,
java.lang.Class clazz)

public void addObjectCreate(java.lang.String pattern,
java.lang.String className)

You pass the pattern and a Class object or a class name. For instance, if you
want the Digester to create an Employee object (whose class is
ex15.pyrmont.digestertest.Employee) upon encountering the pattern
employee, you call one of the following lines of code:

digester.addObjectCreate ("employee",
ex15.pyrmont.digestertest.Employee.class);

or

digester.addObjectCreate ("employee",
"ex15.pyrmont.digestertest.Employee");

The other two overloads of addObjectCreate allow you to define the name
of the class in the XML element, instead of as an argument to the method. This
is a very powerful feature because the class name can be determined at runtime.
Here are the signatures of those method overloads:

public void addObjectCreate(java.lang.String pattern,
java.lang.String className, Jjava.lang.String attributeName)

public void addObjectCreate (java.lang.String pattern,
java.lang.String attributeName, java.lang.Class clazz)

In these two overloads, the att ributeName argument specifies the name of
the attribute of the XML element that contains the name of the class to be
instantiated. For example, you can use the following line of code to add a rule
for creating an object:

digester.addObjectCreate ("employee", null, "className");

where the attribute name is className.

You then pass the class name in the XML element.

<employee firstName="Brian" lastName="May"
className="ex15.pyrmont.digestertest.Employee">

Or, you can define the default class name in the addObjectCreate method as
follows:

digester.addObjectCreate ("employee",
"exl5.pyrmont.digestertest.Employee", "className");

If the employee element contains a className attribute, the value specified
by this attribute will be used as the name of the class to instantiate. If no
className attribute is found, the default class name is used.

The object created by addObjectCreate is pushed to an internal stack. A
number of methods are also provided for you to peek, push, and pop the created
objects.

Setting Properties

Another useful method is addSetProperties, which you can use to make the
Digester object set object properties. One of the overloads of this method has
the following signature:

public void addSetProperties(java.lang.String pattern)

You pass a pattern to this method. For example, consider the following code:

digester.addObjectCreate ("employee",
"exl5.pyrmont.digestertest.Employee");
digester.addSetProperties ("employee");

The Digester instance above has two rules, object create and set properties.
Both are set to be triggered by the pattern employee. The rules are executed in
the order they are added to the Digester instance. For the following
employee element in an XML document (which corresponds to the pattern
employee):

<employee firstName="Brian" lastName="May">

The Digester instance first creates an instance of

ex15.pyrmont .digestertest .Employee, thanks to the first rule added to
it. The Digester instance then responds to the second rule for the pattern
employee by calling the setFirstName and setLastName properties of the
instantiated Employee object, passing Brian and May, respectively. An
attribute in the employee element corresponds to a property in the Employee
object. An error will occur if the Employee class does not define any one of the
properties.

Calling Methods

The Digester class allows you to add a rule that calls a method on the topmost
object in the stack upon seeing a corresponding pattern. This method is
addCallMethod. One of its overloads has the following signature:

public void addCallMethod(java.lang.String pattern,
java.lang.String methodName)

Creating Relationships between Objects

A Digester instance has an internal stack for storing objects temporarily.
When the addOb jectCreate method instantiates a class, the result is pushed
into this stack. Imagine the stack as a well. To push an object into the stack is
like dropping a round object having the same diameter as the well into it. To pop
an object means to lift the top most object from the well.

When two addObjectCreate methods are invoked, the first object is
dropped to the well first, followed by the second object. The addSetNext
method is used to create a relationship between the first and the second object
by calling the specified method on the first object and passing the second object
as an argument to the method. Here is the signature of the addSetNext
method:

public void addSetNext (java.lang.String pattern,
java.lang.String methodName)

The pattern argument specifies the pattern that triggers this rule, the
methodName argument is the name of the method on the first object that will
be called. The pattern should be of the form firstObject/secondObject.

For example, an employee can have an office. To create a relationship
between an employee and his/her office, you will first need to use two
addObjectCreate methods, such as the following:
digester.addObjectCreate ("employee",

"exl5.pyrmont.digestertest.Employee");

digester.addObjectCreate ("employee/office",
"ex15.pyrmont.digestertest.Office");

The first addOb jectCreate method creates an instance of the Employee
class upon seeing an employee element. The second addObjectCreate
method creates an instance of Office on seeing <office> under
<employee>.

The two addObjectCreate methods push two objects to the stack. Now,
the Employee object is at the bottom and the Of £ice object on top. To create
a relationship between them, you define another rule using the addSetNext
method, such as the following:

digester.addSetNext ("employee/office", "addOffice");
in which addOffice is 2 method in the Employee class. This method must

accept an Of fice object as an argument. The second Digester example in
this section will clarify the use of addSetNext.

Validating the XML Document

The XML document a Digester parses can be validated against a schema.
Whether or not the XML document will be validated is determined by the
validating property of the Digester. By default, the value of this property is
false.

The setValidating method is used to indicate if you want validation to
be performed. The setValidating method has the following signature:

public void setValidating(boolean validating)

If you want the well-formedness of your XML document to be validated, pass
true to the setValidating method.

Digester Example 1

The first example explains how to use Digester to create an object dynamically
and set its properties. Consider the Employee class in Listing 15.2 that we will
instantiate using Digester.

Listing 15.2: The Employee Class

package exl5.pyrmont.digestertest;
import java.util.ArraylList;

public class Employee {
private String firstName;
private String lastName;
private ArrayList offices

new ArrayList();

public Employee () {
System.out.println ("Creating Employee");

}

public String getFirstName () {
return firstName;

}

public void setFirstName (String firstName) {
System.out.println("Setting firstName : " + firstName);
this.firstName = firstName;

}

public String getLastName () {
return lastName;

}

public void setLastName (String lastName) {
System.out.println("Setting lastName : " + lastName);
this.lastName = lastName;

}

public void addOffice (Office office) {

System.out.println ("Adding Office to this employee");
offices.add(office);
}
public ArrayList getOffices() {
return offices;
}
public void printName () {
System.out.println("My name is " + firstName + " " + lastName);

}

The Employee class has three properties: £irstName, lastName, and

office. The firstName and lastName properties are strings, and office is of
type ex15.pyrmont .digester.Office. The office property will be used

in the second example of Digester.

The Employee class also has one method: printName that simply prints
the first name and last name properties to the console.

We will now write a test class that uses 2 Digester and adds rules for
creating an Employee object and setting its properties. The Test01 class in
Listing 15.3 can be used for this purpose.

Listing 15.3: The Test01 Class

package exl5.pyrmont.digestertest;

import java.io.File;
import org.apache.commons.digester.Digester;

public class Test01l {

public static void main(String[] args) {

String path = System.getProperty ("user.dir") + File.separator +
"etc";

File file = new File(path, "employeel.xml");

Digester digester = new Digester();

// add rules

digester.addObjectCreate ("employee",
"ex15.pyrmont.digestertest.Employee") ;

digester.addSetProperties ("employee");

digester.addCallMethod ("employee", "printName");

try {
Employee employee = (Employee) digester.parse(file);
System.out.println ("First name " + employee.getFirstName());
System.out.println("Last name : " + employee.getLastName());

}
catch (Exception e) {
e.printStackTrace();

}

10

You first define the path containing the location of your XML document and
pass it the File class's constructor. You then create a Digester object and
add three rules having the pattern employee:

digester.addObjectCreate ("employee",
"exl5.pyrmont.digestertest.Employee");

digester.addSetProperties ("employee");

digester.addCallMethod ("employee", "printName");

Next, you call the parse method on the Digester object passing the File
object referencing the XML document. The return value of the parse method
is the first object in the Digester's internal stack:

Employee employee = (Employee) digester.parse(file);

This gives you an Employee object instantiated by the Digester. To see if the
Employee object's properties have been set, call the getFirstName and
getLastName methods of the Employee object:

System.out.println ("First name : " + employee.getFirstName());
System.out.println("Last name : " + employee.getLastName());

Now, Listing 15.4 offers the employeel.xml document with the root element
employee. The element has two attributes, firstName and lastName.

Listing 15.4: The employeel.xml file

<?xml version="1.0" encoding="IS0O-8859-1"7?>
<employee firstName="Brian" lastName="May">
</employee>

The result of running the Test 01 class is as follows:

Creating Employee

Setting firstName : Brian
Setting lastName : May

My name is Brian May
First name : Brian

Last name : May

Here is what happened.

When you call the parse method on the Digester object, it opens the
XML document and statts parsing it. First, the Digester sees the employee
start element. This triggers the three rules for the pattern employee in the order
the rules were added. The first rule is for creating an object. Therefore, the
Digester instantiates the Employee class, resulting the calling of the Employee
class's constructor. This constructor prints the string Creating Employee.

The second rule sets the attribute of the Employee object. There are two
attributes in the employee element, firstName and lastName. This rule
causes the set methods of the firstName and lastName properties to be
invoked. The set methods print the following strings:

Setting firstName : Brian
Setting lastName : May

The third rule calls the printName method, which prints the following text:
My name is Brian May

Then, the last two lines are the result of calling the getFirstName and
getLastName methods on the Employee object:

First name : Brian
Last name : May

Digester Example 2

1n

The second Digester example demonstrates how to create two objects and create

a relationship between them. You define the type of relationship created. For
example, an employee works in one or more office. An office is represented by
the Office class. You can create an Employee and an Of £ice object, and
create a relationship between the Employee and Office objects. The Office
class is given in Listing 15.5.

Listing 15.5: The Office Class

package exl5.pyrmont.digestertest;

public class Office {

private Address address;

private String description;

public Office() {
System.out.println("..Creating Office");

}

public String getDescription() {
return description;

}

public void setDescription(String description) {

System.out.println("..Setting office description : " +
description);
this.description = description;

}

public Address getAddress () {
return address;

}

public void setAddress (Address address) {
System.out.println("..Setting office address : " + address);

12

this.address = address;

You create a relationship by calling a method on the parent object. Note that this
example uses the Employee class in Listing 15.2. The Employee class has the
addOffice method to add an Office object to its of fices collection.

Without the Digester, your Java code would look like this:

Employee employee = new Employee();
Office office = new Office();
employee.addOffice (office);

An office has an address and an address is represented by the Address class,
given in Listing 15.6.

Listing 15.6: The Address Class

package exl5.pyrmont.digestertest;

public class Address {

private String streetName;

private String streetNumber;

public Address () {
System.out.println("....Creating Address");

}

public String getStreetName () {
return streetName;

}

public void setStreetName (String streetName) {
System.out.println("....Setting streetName : " + streetName);
this.streetName = streetName;

}

public String getStreetNumber () {
return streetNumber;

}

public void setStreetNumber (String streetNumber) ({
System.out.println("....Setting streetNumber : " + streetNumber);
this.streetNumber = streetNumber;

}

public String toString() {
return "...." + streetNumber + " " + streetName;

}

To assign an address to an office, you can call the setAddress method of the
Of fice class. With no help from Digester, you would have the following code:
Office office = new Office();

Address address = new Address();
office.setAddress (address) ;

13

The second Digester example shows how you can create objects and create
relationships between them. We will use the Employee, Office, and Address
classes. The Test 02 class (in Listing 15.7) uses a Digester and adds rules to
it.

Listing 15.7: The Test02 Class

package exl5.pyrmont.digestertest;

import java.io.File;
import java.util.*;
import org.apache.commons.digester.Digester;

public class Test02 {

public static void main(String[] args) {
String path System.getProperty ("user.dir") + File.separator +
"etc";
File file = new File(path, "employee2.xml");
Digester digester = new Digester();
// add rules
digester.addObjectCreate ("employee",
"ex15.pyrmont.digestertest.Employee");
digester.addSetProperties ("employee");
digester.addObjectCreate ("employee/office",
"exl5.pyrmont.digestertest.Office");
digester.addSetProperties ("employee/office");
digester.addSetNext ("employee/office", "addOffice");
digester.addObjectCreate ("employee/office/address",
"ex15.pyrmont.digestertest.Address");
digester.addSetProperties ("employee/office/address");
digester.addSetNext ("employee/office/address", "setAddress");
try {
Employee employee (Employee) digester.parse(file);
ArrayList offices = employee.getOffices();
Iterator iterator = offices.iterator();
System.out.println(

while (iterator.hasNext ()) {
Office office = (Office) iterator.next();
Address address = office.getAddress();
System.out.println(office.getDescription());
System.out.println ("Address : " +
address.getStreetNumber () + " " + address.getStreetName());
System.out.println("-———----———————————————————————— ")

}

}

catch (Exception e) {
e.printStackTrace();

}

14

To see the Digester in action, you can use the XML document employee2.xml in
Listing 15.8.

Listing 15.8: The employee2.xml file

<?xml version="1.0" encoding="IS0O-8859-1"7?>
<employee firstName="Freddie" lastName="Mercury">
<office description="Headquarters">
<address streetName="Wellington Avenue" streetNumber="223"/>
</office>
<office description="Client site">
<address streetName="Downing Street" streetNumber="10"/>
</office>
</employee>

The result when the Test02 class is run is as follows:

Creating Employee

Setting firstName : Freddie

Setting lastName : Mercury

..Creating Office

..Setting office description : Headquarters
....Creating Address

....Setting streetName : Wellington Avenue
....S8etting streetNumber : 223

..Setting office address :223 Wellington Avenue
Adding Office to this employee

..Creating Office

..Setting office description : Client site
....Creating Address

....Setting streetName : Downing Street
....Setting streetNumber : 10

..Setting office address :10 Downing Street
Adding Office to this employee

Headquarters

Address : 223 Wellington Avenue

Client site

Address : 10 Downing Street

The Rule Class

The Rule class has several methods, the two most important of which are
begin and end. When a Digester instance encounters the beginning of an
XML element, it calls the begin method of all matching Rule objects it
contains. The begin method of the Ru/ class has the following signature:

public void begin(org.xml.sax.Attributes attributes)
throws java.lang.Exception

15

When the Digester instance encounters the end of an XML element, it calls
the end method of all matching Rule instances it contains. The signature of the
end method of the Rule class is as follows.

public void end() throws java.lang.Exception

How do the Digester objects in the preceding examples do the wonder?
Every time you call the addObjectCreate, addCallMethod, addSetNext,
and other methods of the Digester, you indirectly invoke the addRule
method of the Digester class, which adds a Rule object and its matching
pattern to the Rules collection inside the Digester.

The signature of the addRule method is as follows:

public void addRule(java.lang.String pattern, Rule rule)

The implementation of the addRule method in the Digester class is as
follows:

public void addRule (String pattern, Rule rule) {
rule.setDigester (this);
getRules () .add (pattern, rule);

}

Take a look at the Digester class source code for the addObjectCreate
method overloads:

public void addObjectCreate (String pattern, String className) {
addRule (pattern, new ObjectCreateRule (className)) ;
}
public void addObjectCreate (String pattern, Class clazz) {
addRule (pattern, new ObjectCreateRule (clazz));
}
public void addObjectCreate (String pattern, String className,
String attributeName) {
addRule (pattern, new ObjectCreateRule (className, attributeName)) ;
}
public void addObjectCreate (String pattern,
String attributeName, Class clazz) {
addRule (pattern, new ObjectCreateRule (attributeName, clazz));
}

The four overloads call the addRule method. The ObjectCreateRule class-
-whose instance gets created as the second argument to the addRule method--
is a subclass of the Rule class. You may be interested in the begin and end
method implementations in the ObjectCreateRule class:
public void begin(Attributes attributes) throws Exception {

// Identify the name of the class to instantiate

String realClassName = className;

if (attributeName != null) {
String value = attributes.getValue (attributeName);

16

if (value != null) {
realClassName = value;
}
}
if (digester.log.isDebugEnabled()) {
digester.log.debug (" [ObjectCreateRule] {" + digester.match +
"}INew " + realClassName);

}

// Instantiate the new object and push it on the context stack
Class clazz = digester.getClassLoader () .loadClass (realClassName) ;
Object instance = clazz.newInstance();

digester.push (instance);

}

public void end() throws Exception {
Object top = digester.pop();
if (digester.log.isDebugEnabled()) {
digester.log.debug (" [ObjectCreateRule] {" + digester.match +
"} Pop " + top.getClass().getName());

}

The last three lines in the begin method creates an instance of the object and
then pushes it to the internal stack inside the Digester. The end method pops
the object from the stack.

The other subclass of the Rule class works similarly. You can open the
source code if you are keen to know what is behind each rule.

Digester Example 3: Using RuleSet

Another way of adding rules to a Digester instance is by calling its addRuleSet
method. The signature of this method is as follows:

public void addRuleSet (RuleSet ruleSet)

The org.apache.commons.digester.RuleSet interface represents a set
of Rule objects. This interface defines two methods, addRuleInstance and
getNamespaceURI. The signature of the addRuleInstance is as follows:

public void addRuleInstance (Digester digester)

The addRuleInstance method adds the set of Rule objects defined in the
current RuleSet to the Digester instance passed as the argument to this
method.

The getNamespaceURI returns the namespace URI that will be applied to
all Rule objects created in this RuleSet. Its signature is as follows:

17

public java.lang.String getNamespaceURI ()

Therefore, after you create a Digester object, you can create a RuleSet
object and pass the RuleSet object to the addRuleSet method on the
Digester.

A convenience base class, RuleSetBase, implements RuleSet.
RuleSetBase is an abstract class that provides the implementation of the
getNamespaceURI. You only need to provide the implementation of the
addRulelInstances method.

As an example, let's modify the Test 02 class in the previous example by
introducing the EmployeeRuleSet class in Listing 15.9.

Listing 15.9: The EmployeeRuleSet Class

package exl5.pyrmont.digestertest;

import org.apache.commons.digester.Digester;
import org.apache.commons.digester.RuleSetBase;

public class EmployeeRuleSet extends RuleSetBase {
public void addRuleInstances (Digester digester) {
// add rules
digester.addObjectCreate ("employee",
"ex15.pyrmont.digestertest.Employee") ;
digester.addSetProperties ("employee");
digester.addObjectCreate ("employee/office",
"ex15.pyrmont.digestertest.Office");
digester.addSetProperties ("employee/office");
digester.addSetNext ("employee/office", "addOffice");
digester.addObjectCreate ("employee/office/address",
"ex15.pyrmont.digestertest.Address");
digester.addSetProperties ("employee/office/address");
digester.addSetNext ("employee/office/address", "setAddress");

Notice that the implementation of the addRuleInstances method in the
EmployeeRuleSet class adds the same rules to the Digester as the Test02
class does. The Test 03 class in Listing 15.10 creates an instance of the
EmployeeRuleSet and then adds it to the Digester it created earlier.
Listing 15.10: The Test03 Class

package exl5.pyrmont.digestertest;

import java.io.File;

import java.util.ArrayList;

import java.util.Iterator;

import org.apache.commons.digester.Digester;

public class Test03 {

18

public static void main(String[] args) {
String path = System.getProperty ("user.dir") +
File.separator + "etc";
File file = new File(path, "employee2.xml");
Digester digester = new Digester();
digester.addRuleSet (new EmployeeRuleSet ());

try {
Employee employee = (Employee) digester.parse(file);
ArrayList offices = employee.getOffices();
Iterator iterator = offices.iterator();

System.out.println(

while (iterator.hasNext ()) {
Office office (Office) iterator.next();
Address address = office.getAddress();

System.out.println (office.getDescription());
System.out.println ("Address : " +

address.getStreetNumber () + " " + address.getStreetName());
System.out.println("--———--------—"--———————————————— ")

}

}

catch (Exception e) {
e.printStackTrace();

}

When run, the Test 03 class produces the same output as the Test 02 class.
Note however, that the Test 03 is shorter because the code for adding Rule
objects is now hidden inside the EmployeeRuleSet class.

As you will see later, Catalina uses subclasses of RuleSetBase for
initializing its server and other components. In the next sections, you will see
how Digester plays a very important role in Catalina.

ContextConfig

Unlike other types of containers, a StandardContext must have a listener.
This listener configures the StandardContext instance and upon successfully
doing so sets the StandardContext's configured variable to true. In
previous chapters, we used the SimpleContextConfig class as the
StandardContext 's listener. This class was a very simple one whose sole
purpose is to set the configured variable so that the start method of
StandardContext can continue.

In a real Tomcat deployment, the standard listener for StandardContext
is an instance of org.apache.catalina.startup.ContextConfig class.

19

Unlike our humble SimpleContextConfig class, ContextConfig does a
lot of useful stuff that the StandardContext instance cannot live without it.
For example, a ContextConfig instance associated with a
StandardContext installs an authenticator valve in the
StandardContext 's pipeline. It also adds a certificate valve (of type
org.apache.catalina.valves.CertificateValve) to the pipeline.

More importantly, however, the ContextConfig instance also reads and
parses the default web.xml file and the application web.xml file and convert the
XML elements to Java objects. The default web.xml file is located in the conf
directory of CATALINE_HOME. It defines and maps default servlets, maps file
extensions with MIME types, defines the default session timeout, and list
welcome files. You should open the file now to see its contents.

The application web.xml file is the application configuration file, located in
the WEB-INF directory of an application. Both files are not required.
ContextConfig will continue even if none of these files is found.

The ContextConfig creates a StandardWrapper instance for each
servlet element. Therefore, as you can see in the application accompanying this
chapter, configuration is made easy. You are no longer required to instantiate a
wrapper anymore.

Therefore, somewhere in your bootstrap class, you must instantiate the
ContextConfig class and add it to the StandardContext by calling the
addLifecycleListener method of the
org.apache.catalina.Lifecycle interface.

LifecyclelListener listener = new ContextConfig();
((Lifecycle) context).addLifecyclelistener (listener);

The StandardContext fires the following events when it is started:

= BEFORE_START_EVENT
= START_EVENT
= AFTER_START_EVENT

When stopped, the StandardContext fires the following events:

= BEFORE_STOP_EVENT
= STOP_EVENT
= AFTER_STOP_EVENT

The ContextConfig class responds to two events: START_EVENT and
STOP_EVENT. The 1ifecycleEvent method is invoked every time the
StandardContext triggers an event. This method is given in Listing 15.11. 1

20

have added comments to Listing 15.11 so that the stop method is easier to
understand.

Listing 15.11: The 1ifecycleEvent method of ContextConfig

public void lifecycleEvent (LifecycleEvent event) {
// Identify the context we are associated with

try {
context = (Context) event.getLifecycle();
if (context instanceof StandardContext) {
int contextDebug = ((StandardContext) context) .getDebug();

if (contextDebug > this.debug)
this.debug = contextDebug;

}
}
catch (ClassCastException e) {

log(sm.getString ("contextConfig.cce", event.getlLifecycle()), e);

return;
}
// Process the event that has occurred
if (event.getType () .equals (Lifecycle.START_EVENT))

start () ;
else if (event.getType () .equals(Lifecycle.STOP_EVENT))
stop();

As you can see in the end of the 1ifecycleEvent method, it calls either its
start method or its stop method. The start method is given in Listing
15.12. Notice that somewhere in its body the start method calls the
defaultConfig and applicationConfig methods. Both are explained in
the sections after this.

Listing 15.12: The start method of ContextConfig

private synchronized void start () {
if (debug > 0)
log(sm.getString ("contextConfig.start"));
// reset the configured boolean
context.setConfigured(false);
// a flag that indicates whether the process is still
// going smoothly
ok = true;
// Set properties based on DefaultContext

Container container = context.getParent ();
if(!'context.getOverride()) {
if (container instanceof Host) {

((Host) container) .importDefaultContext (context) ;
container = container.getParent ();

}
if(container instanceof Engine) {
((Engine)container) .importDefaultContext (context);

}

21

// Process the default and application web.xml files
defaultConfig();
applicationConfig();
if (ok) {
validateSecurityRoles () ;

}

// Scan tag library descriptor files for additional listener classes
if (ok) |
try |
tldScan () ;
}
catch (Exception e) {
log (e.getMessage (), e);
ok = false;
}
}
// Configure a certificates exposer valve, if required
if (ok)
certificatesConfig();

// Configure an authenticator if we need one
if (ok)
authenticatorConfig();
// Dump the contents of this pipeline if requested
if ((debug >= 1) && (context instanceof ContainerBase)) {
log("Pipline Configuration:");
Pipeline pipeline = ((ContainerBase) context) .getPipeline();
Valve valves[] = null;
if (pipeline != null)
valves = pipeline.getValves();
if (valves != null) {
for (int i = 0; 1 < valves.length; i++) {
log("™ " + valves[i].getInfo());
}
}
log(" ");

}
// Make our application available if no problems were encountered
if (ok)
context.setConfigured(true);
else {
log(sm.getString ("contextConfig.unavailable"));
context.setConfigured(false);

}

The defaultConfig Method

The defaultConfig method reads and parses the default web.xml file in the
Y%CATALINA_HOME%/conf directory. The defaultConfig method is
presented in Listing 15.13.

22

Listing 15.13: The defaultConfig method

private void defaultConfig() {
// Open the default web.xml file, if it exists
File file = new File(Constants.DefaultWebXml) ;
if (!file.isAbsolute())
file = new File(System.getProperty("catalina.base"),
Constants.DefaultWebXml) ;
FileInputStream stream = null;
try {
stream = new FilelInputStream(file.getCanonicalPath());
stream.close();
stream = null;
}
catch (FileNotFoundException e) {
log(sm.getString ("contextConfig.defaultMissing"));
return;
}
catch (IOException e) {
log(sm.getString ("contextConfig.defaultMissing"), e);
return;
}
// Process the default web.xml file
synchronized (webDigester) {
try {
InputSource is =
new InputSource ("file://" + file.getAbsolutePath());
stream = new FilelInputStream(file);
is.setByteStream(stream) ;
webDigester.setDebug (getDebug()) ;
if (context instanceof StandardContext)
((StandardContext) context) .setReplaceWelcomeFiles (true);
webDigester.clear();
webDigester.push (context) ;
webDigester.parse (is);
}
catch (SAXParseException e) {
log(sm.getString ("contextConfig.defaultParse"), e);
log(sm.getString ("contextConfig.defaultPosition",
"" + e.getLineNumber (), "" + e.getColumnNumber()));
ok = false;
}
catch (Exception e) {

log(sm.getString ("contextConfig.defaultParse"), e);
ok = false;
}
finally {
try {
if (stream != null) {

stream.close () ;

}
catch (IOException e) {
log(sm.getString ("contextConfig.defaultClose"), e);

23

}

The defaultConfig method begins by creating a File object that references
the default web.xml file.

File file = new File (Constants.DefaultWebXml) ;

The value of DefaultWebXML can be found in the
org.apache.catalina.startup.Constants class as follows:

public static final String DefaultWebXml = "conf/web.xml";

The defaultConfig method then processes the web.xml file. It locks the
webDigester object variable, then parses the file.

synchronized (webDigester) {
try {

InputSource is =
new InputSource ("file://" + file.getAbsolutePath());

stream = new FilelInputStream(file);

is.setByteStream(stream) ;

webDigester.setDebug (getDebug()) ;

if (context instanceof StandardContext)
((StandardContext) context) .setReplaceWelcomeFiles (true);

webDigester.clear();

webDigester.push (context) ;

webDigester.parse (is);

The webDigester object variable references a Digester instance that have
been populated with rules for processing a web.xml file. It is discussed in the
subsection, "Creating Web Digester" later in this section.

The applicationConfig Method

The applicationConfig method is similar to the defaultConfig method,
except that it processes the application deployment descriptor. A deployment
descriptor resides in the WEB-INF directory of the application directory.

The applicationConfig method is given in Listing 15.14.

Listing 15.14: The applicationConfig method of ContextConfig

private void applicationConfig() {
// Open the application web.xml file, if it exists
InputStream stream = null;
ServletContext servletContext = context.getServletContext ();
if (servletContext != null)

stream = servletContext.getResourceAsStream

(Constants.ApplicationWebXml) ;
if (stream == null) {

24

log(sm.getString ("contextConfig.applicationMissing")) ;
return;

}

// Process the application web.xml file
synchronized (webDigester) {
try {
URL url =
servletContext.getResource (Constants.ApplicationWebXml) ;

InputSource is = new InputSource (url.toExternalForm());
is.setByteStream(stream) ;
webDigester.setDebug (getDebug()) ;
if (context instanceof StandardContext) {
((StandardContext) context) .setReplaceWelcomeFiles (true);
}
webDigester.clear () ;
webDigester.push (context) ;
webDigester.parse(is);
}
catch (SAXParseException e) {
log(sm.getString ("contextConfig.applicationParse"), e);
log(sm.getString ("contextConfig.applicationPosition",
"" + e.getLineNumber (),
"" + e.getColumnNumber()));
ok = false;
}
catch (Exception e) {
log(sm.getString ("contextConfig.applicationParse"), e);
ok = false;
}
finally {
try {
if (stream != null) {
stream.close () ;

}
catch (IOException e) {
log(sm.getString ("contextConfig.applicationClose"), e);

Creating Web Digester

A Digester object reference called webDigester exists in the
ContextConfig class:

private static Digester webDigester = createWebDigester();

This Digester is used to parse the default web.xml and application web.xml
files. The rules for processing the web.xml file are added when the

25

createWebDigester method is invoked. The createWebDigester
method is given in Listing 15.15.

Listing 15.15: The createWebDigester method

private static Digester createWebDigester () {

URL url = null;

Digester webDigester = new Digester();

webDigester.setValidating (true);

url = ContextConfig.class.getResource (
Constants.WebDtdResourcePath_22);

webDigester.register (Constants.WebDtdPublicId_22,
url.toString());

url = ContextConfig.class.getResource (
Constants.WebDtdResourcePath_23);

webDigester.register (Constants.WebDtdPublicId_ 23,

url.toString());

webDigester.addRuleSet (new WebRuleSet ());

return (webDigester);

Notice that createWebDigester method calls the addRuleSet on
webDigester by passing an instance of
org.apache.catalina.startup.WebRuleSet. The WebRuleSet is a
subclass of the org.apache.commons.digester.RuleSetBase class. If
you are familiar with the syntax of a servlet application deployment descriptor
and you have read the Digester section at the beginning of this chapter, you sure
can understand how it works.

The WebRuleSet class is given in Listing 15.16. Note that I have removed
some parts of the addRuleInstances method to save space.

Listing 15.16: The WebRuleSet class

package org.apache.catalina.startup;

import java.lang.reflect.Method;

import org.apache.catalina.Context;

import org.apache.catalina.Wrapper;

import org.apache.catalina.deploy.SecurityConstraint;
import org.apache.commons.digester.Digester;

import org.apache.commons.digester.Rule;

import org.apache.commons.digester.RuleSetBase;
import org.xml.sax.Attributes;

/**

* <p>RuleSet for processing the contents of a web
application

* deployment descriptor (<code>/WEB-INF/web.xml</code>) resource.</p>
*

* Q@author Craig R. McClanahan

* @Qversion $Revision: 1.1 $ $Date: 2001/10/17 00:44:02 $

*/

26

public class WebRuleSet extends RuleSetBase {
[/ e Instance Variables
/**
* The matching pattern prefix to use for recognizing our elements.
*/
protected String prefix = null;

[/ —mmmm e Constructor
/**

* Construct an instance of this <code>RuleSet</code> with
* the default matching pattern prefix.

*/

public WebRuleSet () {
this("");

}

/**

* Construct an instance of this <code>RuleSet</code> with

* the specified matching pattern prefix.

*

* @param prefix Prefix for matching pattern rules (including the
* trailing slash character)

*/

public WebRuleSet (String prefix) {
super () ;
this.namespaceURI = null;

this.prefix = prefix;

/) mmm e Public Methods

* <p>Add the set of Rule instances defined in this RuleSet to the
specified <code>Digester</code> instance, associating them with
our namespace URI (if any). This method should only be called
by a Digester instance.</p>

@param digester Digester instance to which the new Rule instances
should be added.
/
public void addRuleInstances (Digester digester) {
digester.addRule (prefix + "web-app",
new SetPublicIdRule (digester, "setPublicId"));
digester.addCallMethod (prefix + "web-app/context-param",
"addParameter", 2);
digester.addCallParam(prefix +
"web-app/context-param/param-name", 0);
digester.addCallParam(prefix +
"web-app/context-param/param-value", 1);
digester.addCallMethod (prefix + "web-app/display-name",
"setDisplayName", 0);
digester.addRule (prefix + "web-app/distributable",
new SetDistributableRule (digester));

digester.addObjectCreate (prefix + "web-app/filter",
"org.apache.catalina.deploy.FilterDef");
digester.addSetNext (prefix + "web-app/filter", "addFilterDef",

"org.apache.catalina.deploy.FilterDef");

digester.addCallMethod (prefix + "web-app/filter/description",
"setDescription", 0);

digester.addCallMethod (prefix + "web-app/filter/display-name",
"setDisplayName", 0);

digester.addCallMethod (prefix + "web-app/filter/filter-class",
"setFilterClass", 0);

digester.addCallMethod (prefix + "web-app/filter/filter—-name",
"setFilterName", 0);

digester.addCallMethod (prefix + "web-app/filter/large—icon",
"setLargeIcon", 0);

digester.addCallMethod (prefix + "web-app/filter/small-icon",
"setSmallIcon", 0);

digester.addCallMethod (prefix + "web-app/filter/init-param",
"addInitParameter", 2);

digester.addCallParam(prefix +
"web-app/filter/init-param/param-name", 0);

digester.addCallParam(prefix +
"web-app/filter/init-param/param-value", 1);

digester.addObjectCreate (prefix + "web-app/filter-mapping",
"org.apache.catalina.deploy.FilterMap") ;

digester.addSetNext (prefix + "web-app/filter-mapping",
"addFilterMap", "org.apache.catalina.deploy.FilterMap");

digester.addCallMethod (prefix +
"web-app/filter-mapping/filter—-name", "setFilterName", 0);

digester.addCallMethod (prefix +
"web-app/filter-mapping/servlet-name", "setServletName", 0);

digester.addCallMethod (prefix +
"web-app/filter-mapping/url-pattern", "setURLPattern", 0);

digester.addCallMethod (prefix +
"web-app/listener/listener-class", "addApplicationListener",

digester.addRule (prefix + "web-app/servlet",
new WrapperCreateRule (digester));
digester.addSetNext (prefix + "web-app/servlet",
"addChild", "org.apache.catalina.Container");
digester.addCallMethod (prefix + "web-app/servlet/init-param",
"addInitParameter", 2);
digester.addCallParam(prefix +
"web-app/servlet/init-param/param-name", 0);
digester.addCallParam(prefix +
"web-app/servlet/init-param/param-value", 1);
digester.addCallMethod (prefix + "web-app/servlet/jsp-file",
"setJspFile", 0);
digester.addCallMethod (prefix +
"web-app/servlet/load-on-startup", "setLoadOnStartupString",
digester.addCallMethod (prefix +

"web-app/servlet/run-as/role-name", "setRunAs", 0);
digester.addCallMethod (prefix +
"web-app/servlet/security-role-ref", "addSecurityReference",

digester.addCallParam(prefix +
"web-app/servlet/security-role-ref/role-1ink", 1);

digester.addCallParam(prefix +
"web-app/servlet/security-role-ref/role-name", 0);

digester.addCallMethod (prefix + "web-app/servlet/servlet-class"

"setServletClass", 0);

0);

0);

2);

v
’

27

28

digester.addCallMethod (prefix + "web-app/servlet/servlet—-name",
"setName", 0);

digester.addCallMethod (prefix + "web-app/servlet-mapping",
"addServletMapping", 2);

digester.addCallParam(prefix +
"web-app/servlet-mapping/servlet-name", 1);

digester.addCallParam(prefix +
"web-app/servlet-mapping/url-pattern", 0);

digester.addCallMethod (prefix +
"web-app/session-config/session-timeout", "setSessionTimeout", 1,
new Class[] { Integer.TYPE });

digester.addCallParam(prefix +
"web-app/session-config/session-timeout", 0);

digester.addCallMethod (prefix + "web-app/taglib",
"addTaglib", 2);

digester.addCallParam(prefix + "web-app/taglib/taglib-location",

1);
digester.addCallParam(prefix + "web-app/taglib/taglib-uri", 0);
digester.addCallMethod (prefix +

"web-app/welcome-file-list/welcome-file", "addWelcomeFile", 0);
}

}

/) T Private Classes

/**

* A Rule that calls the <code>setAuthConstraint (true)</code> method of
* the top item on the stack, which must be of type
* <code>org.apache.catalina.deploy.SecurityConstraint</code>.
*/
final class SetAuthConstraintRule extends Rule {
public SetAuthConstraintRule (Digester digester) {
super (digester);
}
public void begin (Attributes attributes) throws Exception {
SecurityConstraint securityConstraint =
(SecurityConstraint) digester.peek();
securityConstraint.setAuthConstraint (true);
if (digester.getDebug() > 0)
digester.log("Calling
SecurityConstraint.setAuthConstraint (true)");
}
}

final class WrapperCreateRule extends Rule {
public WrapperCreateRule (Digester digester) {
super (digester);
}
public void begin (Attributes attributes) throws Exception {
Context context =
(Context) digester.peek (digester.getCount () - 1);
Wrapper wrapper = context.createWrapper();
digester.push (wrapper) ;
if (digester.getDebug() > 0)
digester.log("new " + wrapper.getClass () .getName());

public void end() throws Exception {
Wrapper wrapper = (Wrapper) digester.pop();
if (digester.getDebug() > 0)
digester.log("pop " + wrapper.getClass () .getName());

The Application

This chapter's application shows how to use a ContextConfig instance as a
listener to configure the StandardContext object. It consists of only one
class, Boot st rap, which is presented in Listing 15.17.

Listing 15.17: The Bootstrap class

package exl5.pyrmont.startup;

import org.apache.catalina.Connector;

import org.apache.catalina.Container;

import org.apache.catalina.Context;

import org.apache.catalina.Host;

import org.apache.catalina.Lifecycle;

import org.apache.catalina.Lifecyclelistener;
import org.apache.catalina.Loader;

import org.apache.catalina.connector.http.HttpConnector;
import org.apache.catalina.core.StandardContext;
import org.apache.catalina.core.StandardHost;
import org.apache.catalina.loader.WebappLoader;
import org.apache.catalina.startup.ContextConfig;

public final class Bootstrap {

// invoke: http://localhost:8080/appl/Modern or
// http://localhost:8080/app2/Primitive
// note that we don't instantiate a Wrapper here,
// ContextConfig reads the WEB-INF/classes dir and loads all
// servlets.
public static void main(String[] args) {
System.setProperty ("catalina.base",
System.getProperty ("user.dir"));
Connector connector = new HttpConnector();
Context context = new StandardContext ();
// StandardContext's start method adds a default mapper
context.setPath ("/appl");
context.setDocBase ("appl");
LifecyclelListener listener = new ContextConfig();
((Lifecycle) context) .addLifecyclelListener (listener);
Host host = new StandardHost () ;
host.addChild (context) ;
host.setName ("localhost");
host.setAppBase ("webapps") ;

29

30

Loader loader = new WebappLoader();
context.setLoader (loader);
connector.setContainer (host) ;
try {
connector.initialize();
((Lifecycle) connector) .start();
((Lifecycle) host).start();
Container[] ¢ = context.findChildren();
int length = c.length;
for (int i=0; i<length; i++) {
Container child = c[i];
System.out.println(child.getName ()) ;
}
// make the application wait until we press a key.
System.in.read() ;
((Lifecycle) host) .stop();
}
catch (Exception e) {
e.printStackTrace();

}

Running the Applications

To run the application in Windows, from the working directory, type the
following:

java -classpath ./lib/servlet.jar;./lib/commons—
collections. jar; ./lib/commons—digester. jar; ./lib/commons—
logging.jar;./lib/commons-beanutils. jar; ./
exl5.pyrmont.startup.Bootstrap

In Linux, you use a colon to separate two libraries.

java -classpath ./lib/servlet.jar:./lib/commons—
collections.jar:./lib/commons—-digester.jar:./lib/commons—
logging.jar:./lib/commons-beanutils. jar:./
exl5.pyrmont.startup.Bootstrap

To invoke PrimitiveServlet, use the following URL in your browser.

http://localhost:8080/appl/Primitive

To invoke ModernServlet, use the following URL.

http://localhost:8080/appl/Modern

31

Summary

Tomcat is used in different configurations. Easy configuration using a server.xml
file is achieved through the use of Digester objects that converts XML
elements to Java objects. In addition, a web.xml document is used to configure a
servlet/JSP application. Tomcat must be able to patse this web.xml document
and configure a Context object based on the elements in the XML document.
Again, Digester solves this problem elegantly.

32

