
Chapter 1
1. Yes, since it is not a public class. However, you should name your 

java file the same as the class.
2. No, a Java source file must have the java extension.

Chapter 2
1. ASCII stands for American Standard Code for Information 

Interchange.
2. Java uses both ASCII characters and Unicode characters. It uses 

ASCII characters for almost all input elements, except comments, 
identifiers, and the contents of characters and strings. Java uses 
Unicode characters for comments, identifiers and the contents of 
characters and strings.

3. A reference type variable holds the reference (address) of an object, a 
primitive type variable is used to store a primitive.

4. By using the final keyword.
5. An expression is a legal combination of Java operators and operands 

that gets evaluated.
6. Examples of Java operators: 

▪ unary minus operator (-).
▪ increment operator (++)
▪ decrement operator (--)
▪ logical complement operator (!)
▪ bitwise complement operator (~)
▪ addition operator (+)
▪ subtraction operator (-)
▪ modulus operator (%)
▪ AND conditional operator (&&)
▪ OR conditional operator (||)
▪ left shift operator (<<)



7. A ternary operator operates on three operands. The ? : operator is the 
only ternary operator in Java.

8. The operator precedence indicates which operation is performed first 
in the presence of multiple operators in an expression.

9. Traditional comments and end-of-line comments.

Chapter 3
1. An expression is a legal combination of Java operators and operands 

that gets evaluated. A statement is an instruction to do something.
2. You can escape from a while loop by using the break statement. For 

example:

      while (true) {
          // statements
          if (expression) {
              break;
          }
      }

3. No. The following lines of code have the same effect.

      for (int x = 0; x < length; x++)
      for (int x = 0; x < length; ++x)

4. This will be printed.
      One player is playing this game.
      Two players are playing this game.

Chapter 4
1. Constructors, methods, fields.
2. A constructor is used to construct an object. A method is used to 

perform an action. A constructor does not have a return value, and, as 
you will see in Chapter 6, “Inheritance,” methods are inherited but 
constructors are not.

3. No.



4. A null reference variable is not referencing any object.
5. To refer to the current object from a method or a constructor.
6. No. Applying the equal operator == to reference variables compare 

the addresses to objects, not the contents of the objects.
7. Variable scope refers to the accessibility of a variable.
8. Technically, a variable that has been destroyed or no longer 

accessible.
9. By checking if the object is still being referenced.
10. Having more than one method with the same name in the same class.

Chapter 5
1. The state of an immutable object cannot change. String objects are 

immutable and manipulating a String object results in a new String 
instance.

2. Prior to JDK 5, by using System.in.read() as in the getUserInput 
method below

      public String getUserInput() {
          StringBuilder sb = new StringBuilder();
          try {
              char c = (char) System.in.read();
              while (c != '\r') {
                  sb.append(c);
                  c = (char) System.in.read();
              }
          } catch (IOException e) {
          }
          return sb.toString();
      }

In Java 5, by using the next method of the java.util.Scanner class.
3. Yes, the wrapper classes are the templates for creating wrapper 

objects, so these wrapper classes are still required. In addition, 
wrapper classes posses methods that can be used for parsing and 
formatting.

4. You cannot resize an array, but you can create another array and copy
the contents of the first array to the new one.



5. Varargs is a feature in Java 5 that allows methods to have a variable 
length of argument list. 

Chapter 6
1. No.
2. Because of the “is a” relationship between a subclass and a 

superclass. An instance of a subclass can therefore be assigned to a 
superclass variable.

3. Method overloading is a feature in many OOP language that allows 
methods in the same class to have the same name. Method overriding 
is an OOP feature that enables you to change the behavior of a 
method in a subclass. In method overloading, the signatures of the 
methods must not be the same. In method overriding, the signatures of
the methods must be identical.

4. So that you can call a method in the parent class and not overridden in
the subclass.

Chapter 7
1. The try statement provides an easy way of error handling. The 

alternative to this strategy is a series of if statements that tests each of 
the conditions that might lead to an error. Using the latter is harder 
and may make your code hard to read.

Chapter 8
1. Simple and complex mathematical operations.
2. java.util.Date.
3. java.text.SimpleDateFormat.



Chapter 9
1. Because thinking of an interface as a class without implementation 

misses the big picture. An interface defines methods that both the 
service provider and its client must agree on.

2. A concrete class that provides default implementations of an 
interface.

3. An interface that can provide limited implementation.
4. Base classes and abstract classes look similar but their reasons for 

existence are different, albeit similar.

Chapter 10
1. The enum can be part of a class or it can stand alone. For the latter, 

you write it as you would a class. For example:

      public enum CustomerType {
          INDIVIDUAL, 
          ORGANIZATION
      }

2. Enums are safer than static final fields as enumerated values because 
they can restrict values. On the other hands, with static final fields 
you use ints and can assign any value of int.

Chapter 11
1. Collection, List, Set, Queue, ArrayList, Vector, Comparator, 

Map, HashMap, Hashtable.
2. ArrayList is unsynchronized, Vector is synchronized.
3. Comparator is more powerful than Comparable because with 

Comparator you can compare objects in more than one way.



Chapter 12
1. Generics impose stricter type checking at compile time and eliminates

most type castings.
2. A parameterized type is a generic type.

Chapter 13
1. A stream connects Java code to a data reservoir.
2. InputStream, OutputStream, Reader, Writer.
3. Storing objects to persistent storage, such as a file.
4. The class must implement java.io.Serializable.

Chapter 14
1. A nested class is a class declared within the body of another class or 

interface. An inner class is a type of nested class, a non-static one.
2. You can use nested classes to completely hide an implementation. 

Anonymous classes provide for a shorter way of writing event 
listeners.

3. A class that does not have a name.

Chapter 15
1. The ability of the JVM to invoke the correct method implementation 

when a superclass variable is assigned an instance of a subclass.
2. Where the type of object is not known at compile time.

Chapter 16



1. An annotation type is a type of annotation objects. Technically, an 
annotation type is a special type of interface. Annotations are 
instances of annotation types.

2. An annotation type for annotation annotations.
3. Override, Deprecated, and SuppressWarnings.

Chapter 17
1. Create different versions of the parts with static contents.
2. By creating a different properties file for each locale.
3. java.util.Locale and java.util.ResourceBundle.

Chapter 18
1. Because it is very hard to deal with data streams directly at the 

hardware level. 
2. The protocol, the host, the port, and the path.
3. java.net.URL.
4. A socket is an endpoint of a network connection. A socket enables an 

application to read from and write to the network. Two software 
applications residing on two different computers can communicate 
with each other by sending and receiving byte streams over a 
connection.

5. A server socket is used in a server application and its primary task is 
to wait for connections. For each connection obtained, a server socket 
creates a socket to communicate with the remote computer making 
the connection.

Chapter 19
1. The smallest unit of processing.
2. Protecting a critical section so that only one thread at a time can 

access an object’s critical sections.



3. Code segments that guarantee only one thread at a time have access to
a shared resource.


