
Java 6 Input Output

Input output (IO) is one of the most common operations performed by a
computer program. Examples of IO operations are.

▪ Create and delete files
▪ Read from and write to a file or network socket.
▪ Serialize (or save) objects to persistent storage and retrieve saved

objects.

Java provides the java.io package that contains types you can use to
perform IO operations. Many failed IO operations may throw a
java.io.IOException. They may also throw a java.lang.SecurityException
if the failure is related to the lack of permission to perform a certain
function.

Learning Java IO programming by iterating the members of java.io may
not be the best approach, considering there are 12 interfaces, 50 classes,
plus 16 exception classes. This chapter therefore presents topics based on
functionality and select the most important members of the java.io package.

The java.io.File class is the first topic in this chapter. It provides
methods for creating and deleting files and directories, checking the
existence of a file, and so on.

However, the File class does not provide functionality to read and write
a file’s content. For this, you need a stream. Streams, which are discussed in
the section “The Concept of Input/Output Streams,” act like water pipes that
facilitate the transmission of data. There are four types of streams:
InputStream, OutputStream, Reader, and Writer. For better
performance, there are also classes that wrap these streams and buffer the
data being read or written. The names of these classes start with Buffered

2

and the classes are BufferedInputStream, BufferedOutputStream,
BufferedReader, and BufferedWriter.

Reading from and writing to a stream dictate that you do so sequentially,
which means to read the second unit of data, you must read the first one
first. The java.io package provides the RandomAccessFile for non-
sequential operations. This class is the subsequent topic of discussion.

This chapter concludes with object serialization and deserialization,
using the ObjectInputStream and ObjectOutputStream classes.

The File Class

A File object represents a file or directory pathname, and not a physical file
or a directory. Therefore, the physical file/directory that a File object
references does not need to exist. The main advantage of File is that it
provides a system-independent way of representing a pathname. For
example, in Unix/Linux you use a forward slash (/) to separate a directory
from a subdirectory or a file. The myNotes.txt file in the tmp directory can
be written as /tmp/myNotes.txt. Windows, on the other hand, uses a
backslash (\). Therefore, C:\temp\myNotes.txt specifies the myNotes.txt
file in C:\temp. When writing Java code to manipulate files and directories,
it would be tedious if you had to deal with different separators for different
operating systems. Fortunately, the File class addresses this issue. For one,
you can use its separator static field that returns a String to separate a
directory and a subdirectory or a directory from a file. The value of
separator depends on the operating system. In Unix/Linux, separator
returns the string “/”. In Windows, it returns “\”. The charSeparator static
field is similar to separator, but returns a char.

For instance, if you have a path to a directory named parent and a file
called filename, you can join them in a system-independent way by using
this code:

parent + File.separator + filename

The result will be the correct path to the physical file, regardless the
operating system your application is running on.

3

File Constructors

The File class provides several constructors. The simplest one has the
following signature:

public File(java.lang.String pathname)

where pathname is either an absolute or relative path name. If pathname is
null, a java.lang.NullPointerException is thrown. For example, you can
pass an absolute path to a file or directory like this:

File file1 = new File("C:\\temp\\myNote.txt"); // in Windows
File file2 = new File("/tmp/myNote.txt"); // in Linux/Unix

Note that in Windows you use the backslash character as the file separator
and since it is also the escape character in Java, you need two backslash
characters when constructing a File in Windows. Using a forward slash as a
file separator will also work in Windows, is commonly used and, in my
opinion, is less awkward:

File file1 = new File("C:/temp/myNote.txt"); // in Windows

If you pass a relative path name to the constructor, the path is taken to be
relative to the directory from which you run your application. For example,
if you invoke the java program from C:\workDir, the variable file3 below
references a file or directory named music under C:\workDir.

File file3 = new File("music");

If you have a file located under a certain directory, you could use this
constructor to refer to the file, concatenating the directory and the file using
File.separator:

// userSelectedDir is a directory selected by the user at runtime
// and filename is a String containing the name of the file.
File myFile = new File(userSelectedDir + File.separator +

filename);

However, it is shorter to use the second constructor whose signature is as
follows.

public File(java.lang.String parent, java.lang.String child)

4

where parent is an absolute or relative path to a directory and child is the
path to a file or a subdirectory. If child is an absolute path, then it will be
converted into a relative pathname in a system-dependent way. If parent is
an empty string, then child will be converted into an abstract pathname and
resolved against a system-dependent default directory.

For example, the following code references a data directory under
userSelectedDir.

File myFile = new File(userSelectedDir, data);

If parent is null, it is the same as passing child to the single-argument
constructor: File(child).

The third constructor is similar to the second one, except that the parent
is a File object instead of a String:

public File(File parent, String.java.lang child)

If parent is null, it’s the same as invoking the single-argument constructor.

The last constructor of File accepts a URI.

public File(java.net.URI uri)

You use this to create a File object by converting the given file: URI into an
abstract pathname.

File Methods

The following are the more important methods of File.

public boolean canRead()
Tests if the application can read the file referenced by this File object.

public boolean canWrite()
Tests if the application can write to the file referenced by this File
object.

public boolean createNewFile() throws IOException
Creates a new empty file in the location and using the name denoted
by this File object.

public boolean delete()
Deletes the file or directory referenced by this File object.

5

public boolean makeDir()
Creates the directory named by this File object.

public boolean isFile()
Tests if this File object references a file.

public boolean isDirectory()
Tests if this File object references a directory.

public boolean exists()
Tests if the file or directory denoted by this File object exists.

public File[] listFiles()
If this File object denotes a directory, this method returns an array of
File objects referencing the subdirectories and files in the directory.
Otherwise, returns null.

public long getTotalSpace()
Returns the size, in bytes, of the partition referenced by this File
object.

public long getFreeSpace()
Returns the amount of free space, in bytes, in the partition referenced
by this File object.

public long getUsableSpace()
Returns the number of bytes available to this virtual machine on the
partition referenced by this File object. The difference between
getUsableSpace and getFreeSpace is that the former takes into
account restrictions imposed by the operating system, such as write
permissions. The latter does not.

The Concept of Input/Output Streams

Java IO streams can be likened to water pipes. Just like water pipes connect
city houses to a water reservoir, a Java stream connects Java code to a “data
reservoir.” In Java terminology, this “data reservoir” is called a sink and
could be a file, a network socket, or memory. The good thing about streams
is you employ a uniform way to transport data from and to different sinks,
hence simplifying your code. You just need to construct the correct stream.
For example, if the sink is a file you need a file stream.

6

Depending on the data direction, there are two types of streams, input
stream and output stream. You use an input stream to read from a sink and
an output stream to write to a sink. Because data can be classified into
binary data and characters (human readable data), there are also two types
of input streams and two types of output streams. These streams are
represented by the following four abstract classes in the java.io package.

▪ Reader. A stream to read characters from a sink.
▪ Writer. A stream to write characters to a sink.
▪ InputStream. A stream to read binary data from a sink.
▪ OutputStream. A stream to write binary data to a sink.

As mentioned before, the benefit of streams is they define methods for data
reading and writing that can be used regardless the data source or
destination. To connect to a particular sink, you simply need to construct the
correct implementation class. For example, the Reader class defines
method for reading characters from a sink. If the sink is a file, you
instantiate the FileReader class. In a similar token, the FileWriter class is
the Writer class implementation that writes to a file, FileInputStream is
used to read binary data from a file, and FileOutputStream represents a
stream to write binary data to a file. A typical sequence of operations when
working with a stream is as follows:

1. Create a stream. The resulting object is already open, there is no open
method to call.

2. Perform reading/writing operations.
3. Close the stream by calling its close method.

These classes will be discussed in clear detail in the following sections.

Reading Binary Data

You use an InputStream to read binary data from a sink. InputStream is
an abstract class with a number of implementation classes, as shown in
Figure 13.1.

7

Figure 13.1: The hierarchy of InputStream

This section will discuss two child classes of InputStream,
FileInputStream and BufferedInputStream. FileInputStream enables
easy reading from a file and BufferedInputStream provides data buffering
that improves performance. The ObjectInputStream class is used in object
serialization and is discussed in the section, “Object Serialization” later in
this chapter.

InputStream

At the core of the InputStream class are three read method overloads.

public int read()
public int read(byte[] data)
public int read(byte[] data, int offset, int length)

An InputStream employs an internal pointer that points to the starting
position of the data to be read. Each of the read method overloads returns
the number of bytes read or -1 if no data was read into the InputStream.
This happens when the internal pointer has reached the end of file.

The no-argument read method is the easiest to use. It reads the next
single byte from this InputStream and returns an int, which you can then
cast to byte. Using this method to read a file, you use a while block that
keeps looping until the read method returns -1:

int i = inputStream.read();

8

while (i != -1) {
 byte b = (byte) I;
 // do something with b
}

For speedier reading, you should use the second and third read method
overloads, which require you to pass a byte array. The data will then be
stored in this array. The size of array is a matter of compromise. If you
assign a big number, the read operation will be faster because more bytes
are read each time. However, this means allocating more memory space for
the array. In practice, the array size should start from 1000 and up.

What if there are fewer bytes available than the size of the array? The
read method overloads return the number of bytes read, so you always
know which elements of your array contain valid data. For example, if you
use an array of 1,000 bytes to read an InputStream and there are 1,500
bytes to read, you will need to invoke the read method twice. The first
invocation gives you 1,000 bytes, the second 500 bytes.

You can choose to read fewer bytes than the array size using the three-
argument read method overload:

public int read(byte[] data, int offset, int length)

This method overload reads length bytes into the byte array. The value of
offset determines the position of the first byte read in the array.

In addition to the read methods, there are also these methods:

public int available() throws IOException
This method returns the number of bytes that can be read (or skipped
over) without blocking.

public long skip(long n) throws IOException
Skips over the specified number of bytes from this InputStream. The
actual number of bytes skipped is returned and this may be smaller
than the prescribed number.

public void mark(int readLimit)
Remember the current position of the internal pointer in this
InputStream. Calling reset afterwards will return the pointer to the
marked position. The readLimit argument specifies the number of
bytes to be read before the mark position get invalidated.

9

public void reset()
Repositions the internal pointer in this InputStream to the marked
position. Its signature is as follows.

public void close()
Closes this InputStream. You should always call this method when
you are done with this InputStream to release resources.

You will see an example of InputStream in the next section,
“FileInputStream.”

FileInputStream

The FileInputStream class is a subclass of InputStream and allows you to
read binary data sequentially from a file. Its constructors allow you to pass
either a File object or a file path. Here are the constructors.

public FileInputStream(String path)
public FileInputStream(File file)

As an example, the code in Listing 13.1 shows the FileInputStreamTest
class that contains the compareFiles method. This method uses
FileInputStream and methods from the InputStream class to compare
files.

Listing 13.1: The compareFiles method that uses FileInputStream

package app13;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;

public class FileInputStreamTest {
 public boolean compareFiles (String filePath1,
 String filePath2) {
 boolean areFilesIdentical = true;
 File file1 = new File(filePath1);
 File file2 = new File(filePath2);
 if (!file1.exists() || !file2.exists()) {
 System.out.println("One or both files do not exist");
 return false;
 }
 System.out.println("length:" + file1.length());

10

 if (file1.length()!= file2.length()) {
 System.out.println("lengths not equal");
 return false;
 }
 try {
 FileInputStream fis1 = new FileInputStream(file1);
 FileInputStream fis2 = new FileInputStream(file2);
 int i1 = fis1.read();
 int i2 = fis2.read();
 while (i1 != -1) {
 if (i1 != i2) {
 areFilesIdentical = false;
 break;
 }
 i1 = fis1.read();
 i2 = fis2.read();
 }
 fis1.close();
 fis2.close();
 } catch (IOException e) {
 System.out.println("IO exception");
 areFilesIdentical = false;
 }
 return areFilesIdentical;
 }

 public static void main(String[] args) {
 FileInputStreamTest test = new FileInputStreamTest();
 test.compareFiles("c: \\line2.bmp","c: \\line3.bmp");
 }
}

The compareFiles method returns the boolean areFiledIdentical, which is
true only if the compared files are identical. The brain of the method is this
block.

int i1 = fis1.read();
int i2 = fis2.read();
while (i1 != -1) {
 if (i1 != i2) {
 areFilesIdentical = false;
 break;
 }
 i1 = fis1.read();
 i2 = fis2.read();
}

11

It reads the next byte from the first FileInputStream to i1 and the second
FileInputStream to i2 and compares i1 with i2. It continues reading until i1
and i2 are different, in which case it will break from the while loop.

BufferedInputStream

For better performance you should wrap your InputStream with a
BufferedInputStream. BufferedInputStream has two constructors that
accept an InputStream:

public BufferedInputStream(InputStream in)
public BufferedInputStream(InputStream in, int bufferSize)

For example, the following code wraps a FileInputStream with a
BufferedInputStream.

FileInputStream fis = new FileInputStream(aFile);
BufferedInputStream bis = new BufferedInputStream(fis);

Then, instead of calling the methods on fis, work with the
BufferedInputStream bis.

Writing Binary Data

The OutputStream abstract class represents a stream for writing binary
data to a sink. Its child classes are shown in Figure 13.2.

12

Figure 13.2: The implementation classes of OutputStream

This section discusses two implementation classes: FileOutputStream and
BufferedOutputStream. FileOutputStream provides a convenient way to
write to a file and BufferedOutputStream provides better performance.
The ObjectOutputStream class plays an important role in object
serialization and is discussed in the section, “Object Serialization” later in
this chapter.

OutputStream

The OutputStream class defines three write method overloads, which are
mirrors of the read method overloads in InputStream:

public void write(int b)
public void write(byte[] data)
public void write(byte[] data, int offset, int length)

The first overload writes the lowest 8 bits of the integer b to this
OutputStream. The second writes the content of a byte array to this
OutputStream. The third overload writes length bytes of the data starting
at offset offset.

In addition, there are also the no-argument close and flush methods.
close closes the OutputStream and flush forces any buffered content to be
written out to the sink.

We’ll look at an example in the next section, “FileOutputStream.”

FileOutputStream

The FileOutputStream class is a subclass of OutputStream. You use
FileOutputStream to write binary data to a file. The most important thing
to note is its constructors. They allow you to construct a FileOutputStream
object by passing a string containing a path name or a File object. You can
also specify whether you want to append the output to an existing file.

Here are the signatures of some of its constructors.

public FileOutputStream(String path)

13

public FileOutputStream(String path, boolean append)
public FileOutputStream(File file)
public FileOutputStream(File file, boolean append)

With the first and third constructors, if a file by the specified name already
exists, the file will be overwritten. To append to an existing file, pass true to
the second or fourth constructor.

As an example, Listing 13.2 shows the FileOutputStreamTest class
that contains the copyFile method.

Listing 13.2: The FileOutputStreamTest class

package app13;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class FileOutputStreamTest {
 public void copyFiles(String originPath, String

destinationPath)
 throws IOException {
 File originFile = new File(originPath);
 File destinationFile = new File(destinationPath);
 if (!originFile.exists() || destinationFile.exists()) {
 throw new IOException(
 "Origin file must exist and " +
 "Destination file must not exist");
 }
 try {
 byte[] readData = new byte[1024];
 FileInputStream fis = new FileInputStream(originFile);
 FileOutputStream fos =
 new FileOutputStream(destinationFile);
 int i = fis.read(readData);
 while (i != -1) {
 fos.write(readData, 0, i);
 i = fis.read(readData);
 }
 fis.close();
 fos.close();
 } catch (IOException e) {
 throw e;
 }

14

 }

 public static void main(String[] args) {
 FileOutputStreamTest test = new FileOutputStreamTest();
 try {
 test.copyFiles("c:\\temp\\line1.bmp",

"c:\\temp\\line3.bmp");
 System.out.println("Copied Successfully");
 } catch (IOException e) {
 }
 }
}

This part of the copyFile method does the work.

byte[] readData = new byte[1024];
FileInputStream fis = new FileInputStream(originFile);
FileOutputStream fos = new FileOutputStream(destinationFile);
int i = fis.read(readData);
while (i != -1) {
 fos.write(readData, 0, i);
 i = fis.read(readData);
}
fis.close();
fos.close();

The readData byte array is used to store the data read from the
FileInputStream. The number of bytes read is assigned to i. The code then
calls the write method on the FileOutputStream object, passing the byte
array and i as the third argument.

fos.write(readData, 0, i);

BufferedOutputStream

You should always wrap your OutputStream with a
BufferedOutputStream for better performance. BufferedOutputStream
has two constructors that accept an OutputStream.

public BufferedOutputStream(OutputStream out)
public BufferedOutputStream(OutputStream out, int bufferSize)

15

The first constructor uses the default buffer size, the second lets you decide.
For example, you’ll get better performance if you wrap a
FileOutputStream like this:

FileOutputStream fos = new FileOutputStream(aFile);
BufferedOutputStream bos = new BufferedOutputStream(fos);

Writing Text (Characters)

The abstract class Writer defines a stream used for writing characters.
Figure 13.3 shows the implementation classes of Writer.

Figure 13.3: The subclasses of Writer

OutputStreamWriter facilitates the translation of characters into byte
streams using a given character set. The character set guarantees that any
Unicode characters you write to this OutputStreamWriter will be
translated into the correct byte representation. FileWriter is a child class of
OutputStreamWriter that provides a convenient way to write characters to
a file. However, FileWriter is not without flaws. When using FileWriter
you are forced to output characters using the computer’s encoding, which
means characters outside the current character set will not be translated
correctly into bytes. A better alternative to FileWriter is PrintWriter.

This section discusses the BufferedWriter class that buffers characters
written to this Writer for better performance.

16

Writer

This class is similar to the OutputStream class, except that Writer deals
with characters instead of bytes. Like OutputStream, the Writer class has
three write method overloads:

public void write(int b)
public void write(char[] text)
public void write(char[] text, int offset, int length)

However, when working with text or characters, you ordinarily use strings.
Therefore, there are two other overloads of the write method that accept a
String object.

public void write(String text)
public void write(String text, int offset, int length)

The last write method overload allows you to pass a String and write part of
the String to this Writer.

You will learn to use several implementations of Writer in the
following subsections.

OutputStreamWriter

An OutputStreamWriter is a bridge from character streams to byte
streams: Characters written to an OutputStreamWriter are encoded into
bytes using a specified character set. The latter is an important element of
OutputStreamWriter because it enables the correct translations of
Unicode characters into byte representation.

Note
The System.getProperty("file.encoding") method returns the
default encoding of your computer.

The OutputStreamWriter class has four constructors:

public OutputStreamWriter(OutputStream out)
public OutputStreamWriter(OutputStream out,
 java.nio.charset.Charset cs)
public OutputStreamWriter(OutputStream out,
 java.nio.charset.CharsetEncoder enc)

17

public OutputStreamWriter(OutputStream out, String encoding)

All the constructors accept an OutputStream, to which bytes resulting
from the translation of characters written to this OutputStreamWriter will
be written. Therefore, if you want to write to a file, you can pass a
FileOutputStream to the constructor.

The first constructor creates an instance that uses the default encoding,
but the others allow you to pass the encoding that will be used when
translating character streams into byte streams. The OutputStreamWriter
class adds the getEncoding method that will return the name of the
encoding used in this OutputStreamWriter as a String.

The java.nio.charset.Charset class, an argument to the second
constructor, is not discussed in this book, so I will show an example that
uses the last constructor. This example is given in Listing 13.3..

Listing 13.3: Using OutputStreamWriter

package app13;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;

public class OutputStreamWriterTest {
 public static void main(String[] args) {
 try {
 char[] chars = new char[2];
 chars[0] = '\u4F60'; // representing ?
 chars[1] = '\u597D'; // representing ?;
 String encoding = "GB18030";
 File textFile = new File("C:\\temp\\myFile.txt");
 OutputStreamWriter writer = new OutputStreamWriter(
 new FileOutputStream(textFile), encoding);
 writer.write(chars);
 writer.close();
 } catch (IOException e) {
 System.out.println(e.toString());
 }
 }
}

18

The code in Listing 13.3 creates an OutputStreamWriter based on a
FileOutputStream that writes to C:\temp\myFile.txt on Windows.
Therefore, if you are using Linux/Unix you need to change the value of
textFile. The use of an absolute path is intentional since most readers find it
easier to find if they want to open the file. The OutputStreamWriter uses
the GB18030 encoding, the encoding the Chinese government requires all
its software suppliers to use in their applications. This encoding defines the
character set for Simplified Chinese characters. The use of an encoding
other than English is good for showing how encoding works.

The code in Listing 13.3 passes two Chinese characters: 你 (represented
by the Unicode 4F60) and 好 (Unicode 597D). 你好 means ‘How are you?’
in Chinese.

When executed, the OutputStreamWriterTest class will create the
myFile.txt file. It is 4 bytes long. You can open it and see the Chinese
characters. For the characters to be displayed correctly, you need to have the
Chinese font installed in your computer.

FileWriter

FileWriter provides a convenient way of writing characters to a file. Using
FileWriter is fine as long as you are not trying to write characters
belonging to other character sets. In other words, if your computer’s default
language is English, writing Korean characters using FileWriter will not
work. Unfortunately, there is no way you can change the encoding of a
FileWriter.

FileWriter has constructors that allow you to construct an instance from
a File, a file path, or a FileDescriptor. You also have the option to append
to an existing file or to create a new file. Here are the constructors.

public FileWriter(File file)
public FileWriter(File file, boolean append)
public FileWriter(String path)
public FileWriter(String path, boolean append)
public FileWriter(FileDescriptor fileDescriptor)

For example, you can construct a Writer that writes to a file easily using
FileWriter:

19

FileWriter writer = new FileWriter("myFile.txt");
writer.write(chars);

PrintWriter

PrintWriter is a better alternative to OutputStreamWriter and
FileWriter. Like OutputStreamWriter, PrintWriter lets you choose an
encoding by passing the encoding information to one of its constructors.
Here are some of its constructors:

public PrintWriter(File file)
public PrintWriter(File file, String characterSet)
public PrintWriter(String filepath)
public PrintWriter(String filepath, String ccharacterSet)
public PrintWriter(OutputStream out)
public PrintWriter(Writer out)

For example, using the first, second, third, and fourth constructors, you can
create a PrintWriter that writes to a file. The two-argument constructors let
you pass the name of the character set to use, so you can write any Unicode
characters. In addition, you can construct a PrintWriter object by passing
an OutputStream or another Writer object.

Also, it is easier to construct a PrintWriter than an
OutputStreamWriter. For example, the following line of code

OutputStreamWriter writer = new OutputStreamWriter(
 new FileOutputStream(filePath), encoding);

can be replaced by this shorter one.

PrintWriter writer = new PrintWriter(filePath, encoding);

PrintWriter is more convenient to work with than OutputStreamWriter
because the former adds nine print method overloads that allow you to
output any type of Java primitives and objects. Here are the method
overloads:

public void print(boolean b)
public void print(char c)
public void print(char[] s)
public void print(double d)
public void print(float f)

20

public void print(int i)
public void print(long l)
public void print(Object object)
public void print(String string)

There are also nine println method overloads, which are the same as the
print method overloads, except that they print a new line character after
printing the argument.

In addition, there are two format method overloads that enable you to
print according to a print format. This method was covered in Chapter 5,
“Core Classes.”

Listing 13.4 presents an example of PrintWriter.

Listing 13.4: Using PrintWriter

package app13;
import java.io.IOException;
import java.io.PrintWriter;

public class PrintWriterTest {
 public static void main(String[] args) {
 try {
 PrintWriter pw = new
 PrintWriter("c:\\temp\\printWriterOutput.txt");
 pw.println("PrintWriter is easy to use.");
 pw.println(1234);
 pw.close();
 } catch (IOException e) {
 }
 }
}

The nice thing about writing using a PrinterWriter is, when you open the
resulting file, everything is human-readable. The file created by the
preceding example says:

PrinterWriter is easy to use.
1234

BufferedWriter

21

Always wrap your Writer with a BufferedWriter for better performance.
BufferedWriter has the following constructors that allow you to pass a
Writer object.

public BufferedWriter(Writer writer)
public BufferedWriter(Writer writer, in bufferSize)

The first constructor creates a BufferedWriter with the default buffer size
(the documentation does not say how big). The second one lets you choose
the buffer size.

Therefore, if you are working with a FileWriter, you’ll get better
performance if you wrap it with a BufferedWriter:

FileWriter fw = new FileWriter(aFile);
BufferedWriter bw = new BufferedWriter(fw);

When working with PrintWriter (you’ll be working mostly with this when
you need to output characters to a stream), you cannot wrap it in a similar
fashion, such as:

PrintWriter pw = new PrintWriter(aFile);
BufferedWriter bw = new BufferedWriter(pw);

Because then you would not be able to use the methods of the PrintWriter.
Instead, wrap the Writer that is passed to a PrintWriter.

FileWriter fw = new FileWriter(aFile);
PrintWriter pw = new PrintWriter(new BufferedWriter(fw));

Reading Text (Characters)

You use the Reader class to read text (characters, i.e. human readable data).
The hierarchy of this class is shown in Figure 13.4.

22

Figure 13.4: Reader and its descendants

This section discusses several child classes of Reader.

Note
The two more popular implementation classes of Reader are
InputStreamReader and BufferedReader.

Reader

Reader is an abstract class that represents an input stream for reading
characters. It is similar to InputStream except that Reader objects deal
with characters and not bytes. The Reader class has three read method
overloads that are similar to the read methods in InputStream:

public int read()
public int read(char[] data)
public int read(char[] data, int offset, int length)

These method overloads allow you to read a single character or multiple
characters that will be stored in a char array. Additionally, Reader has the
fourth read method that enables you to read characters into a
java.nio.CharBuffer.

public int read(java.nio.CharBuffer target)

In addition, Reader provides the following methods that are similar to those
in InputStream: close, mark, reset, and skip.

23

InputStreamReader

An InputStreamReader reads bytes and translates them into characters
using the specified character set. Therefore, InputStreamReader is ideal
for reading from the output of an OutputStreamWriter or a PrintWriter.
The key is you must know the encoding used when writing the characters to
correctly read them back.

The InputStreamReader class has four constructors, all of which
require you to pass an InputStream.

public InputStreamReader(InputStream in)
public InputStreamReader(InputStream in,
 java.nio.charset.Charset cs)
public InputStreamReader(InputStream in,
 java.nio.charset.CharsetDecoder, dec)
public InputStreamReader(InputStream in, String charsetName)

For instance, to create an InputStreamReader that reads from a file, you
can pass a FileInputStream to its constructor.

InputStreamReader reader = new InputStreamReader(
 new FileInputStream(filePath), charSet);

Listing 13.5 presents the InputStreamReaderTest class that uses a
PrintWriter to write two Chinese characters and read them back.

Listing 13.5: Using InputStreamReader

package app13;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;

public class InputStreamReaderTest {
 public static void main(String[] args) {
 try {
 char[] chars = new char[2];
 chars[0] = '\u4F60'; // representing ?
 chars[1] = '\u597D'; // representing ?;
 String encoding = "GB18030";

24

 File textFile = new File("C:\\temp\\myFile.txt");
 PrintWriter writer = new PrintWriter(textFile,
 encoding);
 writer.write(chars);
 writer.close();

 // read back
 InputStreamReader reader = new InputStreamReader(
 new FileInputStream(textFile), encoding);
 char[] chars2 = new char[2];
 reader.read(chars2);
 System.out.print(chars2[0]);
 System.out.print(chars2[1]);
 reader.close();
 } catch (IOException e) {
 System.out.println(e.toString());
 }
 }

}

FileReader

A subclass of InputStreamReader, FileReader is a convenient class to
read characters from a file. However, like FileWriter, it lacks the ability to
use an encoding other than the default one. FileReader cannot read the
characters correctly if the encoding used for writing the file is different than
the computer’s current encoding.

To construct a FileReader object, use one of the following constructors.

public FileReader(File file)
public FileReader(FileDescriptor fileDescriptor)
public FileReader(String filePath)

BufferedReader

BufferedReader is good for two things:

1. Wraps another Reader and provides a buffer that will generally
improve performance.

2. Provides a readLine method to read a line of text.

25

The readLine method has the following signature:

public java.lang.String readLine() throws IOException

It returns a line of text from this Reader or null if the end of the stream has
been reached.

Using BufferedReader is very easy. For example, the following lines of
code wraps an InputStreamReader (which is also a reader) that uses a
certain encoding.

InputStreamReader inputStreamReader = new InputStreamReader(new
 FileInputStream(textFile), encoding);
BufferedReader bufferedReader = new
 BufferedReader(inputStreamReader);

The resulting BufferedReader still supports the encoding of the underlying
InputStreamReader, but at the same time it supports buffering and
provides the readLine method.

As another example, this snippet reads a text file and displays it line by
line.

FileReader fr = new FileReader(aFile);
BufferedReader br = new BufferedReader(fr);
String line = br.readLine();
while (line != null) {
 System.out.println(line);
 line = br.readLine();
}

Also, prior to Java 5, you used a BufferedReader to read user input to the
console. Listing 13.6 shows the getUserInput method that can take user
input on the console.

Listing 13.6: The getUserInput method

public static String getUserInput() {
 BufferedReader br = new BufferedReader(
 new InputStreamReader(System.in));
 try {
 return br.readLine();
 } catch (IOException ioe) {
 }
 return null;

26

}

You can do this because System.in is of type java.io.InputStream.

Note
The java.util.Scanner class can be used to easily read user input.
See Chapter 5, “Core Classes” for more detail.

Logging with PrintStream

By now you must be familiar with the print method of System.out. You use
it especially for displaying messages and this helps you debug your code.
However, by default System.out sends the message to the console, and this
is not always preferable. For instance, if the amount of data displayed
exceeds a certain lines, previous messages are no longer visible. Also, you
might want to process the messages further, such as sending the messages
via email.

The PrintStream class is an indirect subclass of OutpuStream. It has
seven constructors:

public PrintStream(File file)
public PrintStream(File file, String characterSet)
public PrintStream(OutputStream out)
public PrintStream(OutputStream out, boolean autoFlush)
public PrintStream(OutputStream out, boolean autoFlush,
 String encoding)
public PrintStream(String filePath)
public PrintStream(String filePath, String characterSet)

You can construct a PrintStream by passing a File, an OutputStream, or a
path to a file. Some of its constructors let you choose a character set to use.

PrintStream is very similar to PrintWriter. For example, both have
nine print method overloads. Also, PrintStream has the format method
similar to the format method of the String class. See Chapter 5, “Core
Classes” for more information.

System.out is of type java.io.PrintStream. The System object lets you
replace the default PrintStream by using the setOut method. Listing 13.7
presents an example that redirect the output of System.out to a file.

27

Listing 13.7: Redirecting System.out to a file

package app13;
import java.io.File;
import java.io.IOException;
import java.io.PrintStream;

public class PrintStreamTest {
 public static void main(String[] args) {
 File file = new File("C:\\temp\\debug.txt");
 try {
 PrintStream ps = new PrintStream(file);
 System.setOut(ps);
 } catch (IOException e) {
 }
 System.out.println("To File");
 }
}

Note
You can also replace the default in and out in the System object by
using setIn and setErr methods.

RandomAccessFile

Using a stream to access a file dictates that the file is accessed sequentially,
e.g. the first character must be read before the second, etc. Streams are ideal
when the data comes in a sequential fashion, for example if the medium is a
tape (long time ago when the disk had not been invented) or a network
socket. Streams are good for most of your applications, however sometimes
you need to access a file randomly and using a stream would not be fast
enough. For example, you may want to change the 1000th byte of a file
without having to read the first 999 bytes. For random access like this,
RandomAccessFile is ideal to work with.

RandomAccessFile derives directly from java.lang.Object and can
perform both read and write operations. When opening a file using a
RandomAccessFile, you can choose whether to open it read-only or read-
write. RandomAccessFile has two constructors:

28

public RandomAccessFile(File file, String mode)
 throws FileNotFoundException
public RandomAccessFile(String filePath, String mode)
 throws FileNotFoundException

The value of mode can be one of these:
▪ “r”. Open for reading only.
▪ “rw”. Open for reading and writing. If the file does not already exist,

RandomAccessFile creates the file.
▪ “rws”. Open for reading and writing and require that every update to

the file’s content and metadata be written synchronously.
▪ “rwd”. Open for reading and writing and require that every update to

the file’s content (but not metadata) be written synchronously.

A RandomAccessFile employs an internal pointer that points to the next
byte to read. When first created, a RandomAccessFile points to the first
byte. You can change the pointer’s position by invoking the seek method.
Its signature is as follows.

public void seek(long position) throws IOException

This pointer is zero-based which means the first byte is indicated by index
0. You can pass a number greater than the file size without throwing an
exception, but this will not change the size of the file.

In addition to seek, the skipBytes method moves the pointer by the
specified number of bytes. Here is its signature.

public int skipBytes(int offset)

If skipping offset number of bytes will pass the end of file, the internal
pointer will only move to as much as the end of file. The skipBytes method
returns the actual number of bytes skipped.

For reading from a file, RandomAccessFile provides a number of
methods, each for reading a different data type:

public boolean readBoolean() throws IOException
public byte readByte() throws IOException
public char readChar() throws IOException
public double readDouble() throws IOException
public int readInt() throws IOException
public long readLong() throws IOException

29

public short readShort() throws IOException

In addition, RandomAccessFile can also behave like a Reader because it
provides the readLine method that reads a line of text:

public String readLine()

For faster reading, RandomAccessFile provides the readFully method
overloads, that read data to a byte array:

public void readFully(byte[] data)
public void readFully(byte[] data, int offset, int length)

For writing, RandomAccessFile provides methods that mirror the methods
for reading, such as writeBoolean, writeByte, etc. Plus, there are two write
method overloads to write the content of a byte array:

public void write(byte[] data)
public void write(byte[] data, int offset, int length)

RandomAccessFile is suitable for accessing a file that has a fixed structure
randomly. For instance, you might use RandomAccessFile as a simple
database to store fixed-length elements of data.

As an example, the code in Listing 13.8 employs RandomAccessFile to
store ints and changes the value of the third int. An int takes 4 bytes,
therefore the fourth int is pointed by the index 3-1 * 4 (3-1 because it’s
zero-based)

Listing 13.8: Using RandomAccessFile

package app13;
import java.io.IOException;
import java.io.RandomAccessFile;

public class RandomAccessFileTest {
 public static void main(String[] args) {
 try {
 RandomAccessFile raf = new RandomAccessFile(
 "c:/temp/RAFsample.txt", "rw");
 raf.writeInt(10);
 raf.writeInt(43);
 raf.writeInt(88);
 raf.writeInt(455);

30

 // change the 3rd integer from 88 to 99
 raf.seek((3 - 1) * 4);
 raf.writeInt(99);
 raf.seek(0); // go to the first integer
 int i = raf.readInt();
 while (i != -1) {
 System.out.println(i);
 i = raf.readInt();
 }
 raf.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Object Serialization

You sometimes need to persist objects in memory into permanent storage so
that the states of the objects can be retained and later retrieved. Java
supports this through object serialization. To serialize objects, i.e. to save
objects to permanent storage, you use an ObjectOutputStream. To
deserialize objects, namely to retrieved saved objects, use
ObjectInputStream. ObjectOutputStream is a subclass of
OutputStream and ObjectInputStream is derived from InputStream.

The ObjectOutputStream class has one public constructor:

public ObjectOutputStream(OutputStream out)

Therefore, to serialize objects to a file, you can pass a FileOutputStream to
the constructor. Once you have an ObjectOutputStream, you can serialize
objects or primitives or the combination of both. The ObjectOutputStream
class provides the writeXXX methods for each individual type, where XXX
denotes a type. Here is the list of the writeXXX methods.

public void writeBoolean(boolean value)
public void writeByte(int value)
public void writeBytes(String value)
public void writeChar(int value)
public void writeChars(String value)
public void writeDouble(double value)

31

public void writeFloat(float value)
public void writeInt(int value)
public void writeLong(long value)
public void writeShort(short value)
public void writeObject(java.lang.Object value)

For objects to be serializable their classes must implement the
java.io.Serializable interface. This interface has no method and is a marker
interface. A marker interface is one that tells the JVM that an instance of an
implementing class belongs to a certain type.

If a serialized object contains other objects, the contained objects’
classes must also implement Serializable for the contained objects to be
serializable.

The ObjectInputStream class has a public constructor:

public ObjectInputStream(InputStream in)

Therefore, to deserialize from a file, you can pass a FileInputStream to the
constructor. The ObjectInputStream class has methods that are the
opposites of the writeXXX methods in ObjectOutputStream. They are as
follows:

public boolean readBoolean()
public byte readByte()
public char readChar()
public double readDouble()
public float readFloat()
public int readInt()
public long readLong()
public short readShort()
public java.lang.Object readObject()

One important thing to note: object serialization is based on a last in first
out method. When deserializing multiple primitives/objects, the objects that
were serialized first must be deserialized last.

Listing 13.10 shows a class that serializes an int and a Customer
object. Note that the Customer class, given in Listing 13.9, implements
Serializable.

Listing 13.9: The Customer class

32

package app13;
import java.io.Serializable;

public class Customer implements Serializable {
 public int id;
 public String name;
 public String address;
 public Customer (int id, String name, String address) {
 this.id = id;
 this.name = name;
 this.address = address;
 }
}

Listing 13.10: Object serialization example

package app13;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

public class ObjectSerializationTest {

 public static void main(String[] args) {
 // Serialize
 try {
 Customer customer = new Customer(1, "Joe Blog",
 "12 West Cost");
 FileOutputStream fos = new FileOutputStream(
 "c:\\temp\\objectOutput");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 // write first object
 oos.writeObject(customer);
 // write second object
 oos.writeObject("Customer Info");
 oos.close();
 fos.close();
 } catch (FileNotFoundException e) {
 System.out.print("FileNotFound");
 } catch (IOException e) {
 System.out.print("IOException");
 }

 // Deserialize

33

 try {
 FileInputStream fis =
 new FileInputStream("c:\\temp\\objectOutput");
 ObjectInputStream ois = new ObjectInputStream(fis);
 // read first object
 Customer customer2 = (Customer) ois.readObject();
 System.out.println("First Object: ");
 System.out.println(customer2.id);
 System.out.println(customer2.name);
 System.out.println(customer2.address);

 // read second object
 System.out.println();
 System.out.println("Second object: ");
 String info = (String) ois.readObject();
 System.out.println(info);
 ois.close();
 fis.close();
 } catch (ClassNotFoundException ex) {
 System.out.print("ClassNotFound " + ex.getMessage());
 } catch (IOException ex2) {
 System.out.print("IOException " + ex2.getMessage());
 }
 }
}

Summary

Input output operations are supported through the members of the java.io
package. You can read and write data through streams and data is classified
into binary data and text. In addition, Java support object serialization
through the Serializable interface and the ObjectInputStream and
ObjectOutputStream classes.

Questions
1. What is a stream?
2. Name four abstract classes that represent streams in the java.io

package.

34

3. What is object serialization?
4. What is the requirement for a class to be serializable?

